Tools for Practice Outils pour la pratique

#218 CPAP—Breath of life, or just hot air?

Does continuous positive airway pressure (CPAP) reduce cardiovascular disease (CVD) or mortality in patients with obstructive sleep apnea?

There is lack of convincing evidence that CPAP reduces CVD or mortality in patients with moderate-to-severe obstructive sleep apnea. Adherence to CPAP treatment in most clinical trials is low (1.4-5.8 hours/night at one year). Modest clinically important improvements in daytime sleepiness have been demonstrated. Quality of life scales have also demonstrated improvement, although clinical significance is unclear. 

CFPCLearn Logo

Reading Tools for Practice Article can earn you MainPro+ Credits

La lecture d'articles d'outils de pratique peut vous permettre de gagner des crédits MainPro+

Join Now S’inscrire maintenant

Already a CFPCLearn Member? Log in

Déjà abonné à CMFCApprendre? Ouvrir une session

  • Three meta-analyses of randomized controlled trials (RCTs).1,2,3 Patients were predominantly malemean age >60 years, with moderate-to-severe obstructive sleep apnea. 
    • No statistical different in CPAP versus standard care or sham:  
      • CVD:1-3 7% CPAP versus 8% control (seven trials, 4,562 patients).1 
      • Cardiovascular death:1,2 9% CPAP versus 8% control (seven trials, 5,476 patients).1 
      • Acute coronary syndrome:1,2 3% CPAP versus 3% control (seven trials, 4,562 patients).1 
      • Stroke:1-3 4% CPAP versus 4% control (six trials, 4,171 patients).1 
    • Post-hoc analysis did not identify any significant relationship between CPAP and CVD regardless of apnea severity, length of follow-up, or adherence.1 
    • Limitations: Included studies somewhat heterogeneous with inclusion of central apnea patients in some outcomesdifferences in length of follow-up (2-68 months), and adherence to CPAP (1.4-5.8 hours/night at one year).  
  • Obstructive sleep apnea is associated with increased risk of CVD and mortality.4,5 
  • CPAP modestly improves daytime sleepiness by 1.6-3.8 on a 24-point scale, which is likely clinically detectable.6-10 
  • CPAP is associated with modest improvements in quality of life measures (example ~3.3-9.7 improvement on a 100-point scale)11 with uncertain clinical relevance.  
  • CPAP significantly decreases blood pressure (mean reduction 2.5 mmHg systolic and 2 mmHg diastolic).12 
  • Observational data suggests that CPAP use significantly reduces motor vehicle accidents.13 A large RCT (2,717 patients) reports a non-statistically significant trend towards injury reduction (7.4% versus 8.8%, p = 0.06).14 

James Lanz-O'Brien July 24, 2021

This is very interesting.

paul duchastel December 11, 2023

I am very surprised by lack of statistical correlation. A few of my patients have refused CPap and done well with good sleep hygiene ,weight reduction and stopping alcohol in evening.

gregory Stroh December 12, 2023

Same theme as many of these articles.Canadian guide lines seem to be running there own coarse oblivious of statistical data

Latest Tools for Practice
Derniers outils pour la pratique

#363 Making a difference in indifference? Medications for apathy in dementia

In patients with dementia, how safe and effective are stimulants, antidepressants, and antipsychotics for treating apathy?
Read Lire 0.25 credits available Crédits disponibles

#362 Facing the Evidence in Acne, Part I: Oral contraceptives and spironolactone in females

How effective are combined oral contraceptives (COC) and spironolactone for treating acne of at least mild-moderate severity in females?
Read Lire 0.25 credits available Crédits disponibles

#361 Preventing RSV Infections in Infants

How safe and effective are monoclonal antibodies to prevent respiratory syncytial virus (RSV) infections in infants?
Read Lire 0.25 credits available Crédits disponibles

This content is certified for MainPro+ Credits, log in to access

Ce contenu est certifié pour les crédits MainPro+, Ouvrir une session

  • Peter (Ran) Yang BScPharm ACPR
  • Christina Korownyk MD CCFP

1. Yu J, Zhou Z, McEvoy RD, et al. JAMA. 2017; 318:156-66.

2. Abuzaid AS, Al Ashry HS, Elbadawi A, et al. Am J Cardiol. 2017; 120:693-9.

3. Guo J, Sun Y, Xue LJ, et al. Sleep Breath. 2016; 20:965-74.

4. Laratta CR, Ayas NT, Povitz M, et al. CMAJ. 2017; 189(48):E1481-88.

5. Kendzerska T, Mollayeva T, Gershon AS, et al. Sleep Med Rev. 2014; 18(1):49-59.

6. Giles TL, Lasserson TJ, Smith BH, et al. Cochrane Database Syst Rev. 2006; (3):CD001106.

7. Campos-Rodriguez F, Queipo-Corona C, Carmona-Bernal C, et al. Am J Respir Crit Care Med. 2016; 194(10):1286-94.

8. Phillips CL, Grunstein RR, Darendeliler MA, et al. Am J Respir Crit Care Med. 2013; 187:879-87.

9. Patel S, Kon S, Nolan C, et al. Am J Respir Crit Care Med. 2018; 197(7):961-3.

10. Dauvilliers Y, Bassetti C, Lammers GJ, et al. Lancet Neurol. 2013; 12(11):1068-75.

11. Kuhn E, Schwarz EI, Bratton DJ, et al. Chest. 2017; 151:786-94.

12. Bratton DJ, Gaisl T, Wons AM, et al. JAMA. 2015; 314(21):2280-93.

13. Tregear S, Reston J, Schoelles K, et al. Sleep 2010; 33:1373-80.

14. McEvoy RD, Antic NA, Heeley E, et al. N Engl J Med. 2016; 375(10):919-31.

Authors do not have any conflicts of interest to declare.

Les auteurs n’ont aucun conflit d’intérêts à déclarer.